Efficient Riemannian Submanifold Algorithm on Stiefel Manifolds for Deep Neural Networks ESTR4998 Graduation Thesis I Presentation

Fong, Shi Yuk

Email: syfong1@cse.cuhk.edu.hk

Department of Computer Science and Engineering The Chinese University of Hong Kong

December 5, 2024

1 Elements of Riemannian Manifold Optimization

- 2 Generic Framework for First-Order Riemannian Methods
- O Problem Statement
 - Existing Methods
- 5 Proposed Method

Part 1. Elements of Riemannian Manifold Optimization

Definition (Manifold)

A manifold \mathcal{M} of dimension d is a topological space that locally resembles Euclidean space. Formally, for any $W \in \mathcal{M}$, there exists an open neighbourhood $U_W \subseteq \mathcal{M}$ and a homeomorphism (topological isomorphism) $\phi: U_W \to V$ where V is an open subset of \mathbb{R}^d .

Definition (Riemannian Manifold)

A Riemannian manifold is a smooth manifold equipped with a smooth inner product $\langle \cdot, \cdot \rangle_W$ of tangent vectors at each point W.

Definition (Tangent Space)

The tangent space $\mathcal{T}_W \mathcal{M}$ for a manifold \mathcal{M} at a point $W \in \mathcal{M}$ is defined by the collection of tangent vectors at W for all smooth curves $c : \mathbb{R} \to \mathcal{M}$ passing through W.

4/33

Definition (Stiefel Manifold)

The Stiefel manifold is defined by

$$\operatorname{St}(d,p) = \{ W \in \mathbb{R}^{d \times p} : W^{\top}W = I_p \}.$$

The Orthogonal Group is a special case of Stiefel Manifold, which is defined by

$$\mathcal{O}_d = \operatorname{St}(d, d) = \{ W \in \mathbb{R}^{d \times p} : W^\top W = W W^\top = I_p \}.$$

Definition (Tangent Space of Stiefel Manifold)

Given a point $W \in \operatorname{St}(d,p)$, the tangent space at W is defined as

$$\mathcal{T}_W \operatorname{St}(d, p) = \{ \xi \in \mathbb{R}^{d \times p} \mid \xi^\top W + W^\top \xi = \mathbf{0} \}.$$

5/33

(1)

6/33

Consider the optimization problem:

 $\min_{W\in\operatorname{St}(d,p)}f(W),$

where $f : \mathbb{R}^{d \times p} \to \mathbb{R}$ may be non-smooth non-convex.

Given a data matrix $X \in \mathbb{R}^{N \times m}$ consisting of m samples of N-dimensional data, the goal is to find a linear map $T : \mathbb{R}^N \to \mathbb{R}^n$ characterized by a matrix $U \in \mathbb{R}^{N \times n}$ that maps the data into an n-dimensional subspace that best preserves the reconstruction error of the data. The optimization problem is then

$$\min_{U \in \text{St}(N,n)} ||X - UU^{\top}X||_F^2.$$
(2)

Part 2. Generic Framework for First-Order Riemannian Methods

Riemannian Gradient

For a manifold \mathcal{M} , given a point W and its corresponding tangent space $\mathcal{T}_W \mathcal{M}$, the Riemannian gradient is defined as

$$\widetilde{\nabla}f(W) = \mathcal{P}_{\mathcal{T}_W\mathcal{M}}(\nabla f(W)), \tag{3}$$

where $\nabla f(W)$ is the Euclidean gradient of f at p, and $\mathcal{P}_{\mathcal{S}}(\xi) \coloneqq \arg\min_{\zeta \in \mathcal{S}} ||\zeta - \xi||_2$ is the projection operator onto the set \mathcal{S} .

Figure: Illustration of Riemannian gradient on a simple manifold S_1 , which is a circle embedded in ambient space \mathbb{R}^2 .

9/33

For the Stiefel manifold St(d, p), the Riemannian gradient is given by

$$\widetilde{\nabla}f(W) = W\operatorname{skew}(W^{\top}\nabla f(W)),$$
(4)

where skew $(A) = \frac{1}{2}(A - A^{\top})$ is the skew-symmetric operator, and $\nabla f(W)$ is the Euclidean gradient of f at W.

Retraction Map

Each gradient descent step is then performed by iteratively updating the point \boldsymbol{W} as

$$W \leftarrow \operatorname{Retr}_W(-\lambda \widetilde{\nabla} f(W)),$$
 (5)

where $\operatorname{Retr}_W(\cdot)$ is the retraction map at W onto the manifold \mathcal{M} , and $\lambda \in \mathbb{R}_{++}$ is the step size. This usually can be done by a two-step process:

- Compute the Riemannian gradient update $W \leftarrow W \lambda \widetilde{\nabla} f(W)$.
- **2** Project the updated point onto the manifold by $W \leftarrow \mathcal{P}_{\mathcal{M}}(W)$.

Figure: Illustration of Retraction map on manifold S_1 ,

• Polar-decomposition (Polar) based retraction:

$$\operatorname{Retr}^{\mathsf{Polar}}_W(\xi) = (W+\xi)(I+\xi^\top\xi)^{-\frac{1}{2}}$$

• Exponential map (Expm) retraction:

$$\operatorname{Retr}_W^{\mathsf{Expm}}(\xi) = W \operatorname{Exp}(W^{\top}\xi)$$

where $\operatorname{Exp}(\cdot)$ is the matrix exponential function.

Part 3. Problem Statement

Given the input sequence $x = \{x_t\}_{t=1}^N$, where $x_t \in \mathbb{R}^{d_{\text{in}}}$, the RNN aims to predict the output sequence $\hat{y} = \{y_t\}_{t=1}^N$, where $y_t \in \mathbb{R}^{d_{\text{out}}}$ is close to some ground truth y^* . The forward pass:

$$\begin{cases} h_0 = \mathbf{0}, \\ h_t = \phi(W_{\text{in}}x_t + Wh_{t-1}), \\ y_t = W_{\text{out}}h_t + b_{\text{out}}, \end{cases}$$
(6)

where $h_t \in \mathbb{R}^d$ with hidden size d is the hidden state at time t, $W_{\text{in}} \in \mathbb{R}^{d \times d_{\text{in}}}$, $W \in \mathcal{O}_d$, $W_{\text{out}} \in \mathbb{R}^{d_{\text{out}} \times d}$, ϕ is the nonlinearity function, and $b_{\text{out}} \in \mathbb{R}^{d_{\text{out}}}$ is the bias term.

We aim to train an RNN with the hidden weight matrix W lying on the orthogonal group \mathcal{O}_d : The optimization problem is formulated as follows:

$$\min_{\Theta} \quad \mathcal{L}_{\Theta}(\hat{y}, y^*) \tag{7}$$

s.t.
$$W \in \mathcal{O}_d$$
, (8)

where Θ is the set of all trainable parameters, and \mathcal{L}_{Θ} is the loss function. In this note, the loss function is assumed to be the cross-entropy loss.

In this project, we would like to propose a new Riemannian optimization algorithm on Stiefel manifolds for training ODNNs that

- is more scalable than the existing algorithms;
- can make use of the full gradient information;
- can be implemented in standard machine learning libraries;
- can utilize a larger learning rate.

Part 4. Existing Methods

17/33

Algorithm Singular Value Bounding (SVB) [LJW⁺21]

- 1: Input: Sequence of step sizes $\{\lambda^k\}$; $\epsilon \in \mathbb{R}^+$.
- 2: Initialize: Set k = 0. Set variable $X^0 \in \mathbb{R}^{m \times n}$ and $W^0 \in \mathcal{O}_d$.
- 3: while not converged do
- 4: Update the variables $X^{k+1} \leftarrow X^k \lambda^k \nabla_{X^k} f$, $W^{k+1} \leftarrow W^k \lambda^k \nabla_{W^k} f$.
- 5: $[U, \Sigma, V] \leftarrow \operatorname{svd}(W^{k+1})$
- 6: Clamp each diagonal term Σ_{ii} into $[1/(1+\epsilon), 1+\epsilon]$.
- 7: $W^{k+1} \leftarrow U\Sigma V^{\top}$
- 8: $k \leftarrow k+1$

9: end while

Issue: Singular value decomposition becomes computationally expensive for large matrices.

Algorithm Riemannian Gradient Descent (RGD-Z) [Bon13, CWYS24]

- 1: **Input:** Sequence of step sizes $\{\lambda^k\}$.
- 2: Initialize: Set k = 0. Set variable $X^0 \in \mathbb{R}^{m \times n}$ and $W^0 \in \mathcal{O}_d$.
- 3: while not converged do
- 4: Update unconstrained variable $X^{k+1} \leftarrow X^k \lambda^k \nabla_{X^k} f$.
- 5: Update constrained variable $W^{k+1} \leftarrow \operatorname{Retr}_{W^k}^{\mathbf{Z}}(-\lambda^k \widetilde{\nabla}_{W^k} f)$.
- $\textbf{6:} \qquad k \leftarrow k+1$
- 7: end while

Here, $Z \in \{Polar, Expm\}$ determines the retraction map used in the algorithm. **Issue**: No matter which retraction map is used, the algorithm is still inefficient.

- Polar: eigendecomposition is computationally expensive
- Expm: matrix exponential is computationally expensive

Randomly pick a pair of indices $(i, j) \in \mathcal{I} := \{(i, j) : 1 \le i < j \le d\}$ representing the entry in upper triangular part of W. Riemannian partial gradient: $\widetilde{\nabla}^{ij} f(W) = \operatorname{tr}(U^{\top} W^{\top} \nabla f(W)) W \operatorname{cherr}(a a^{\top})$

$$\widetilde{\nabla}^{ij}f(W) = \operatorname{tr}(H_{i,j}^{\top}W^{\top}\nabla f(W))W\operatorname{skew}(e_i e_j^{\top}),$$
(9)

Given the Euclidean gradient $\nabla f(W)$, the partial gradient $\widetilde{\nabla}^{ij} f(W)$ can be efficiently computed by the Givens matrix method in O(d) time. $\widetilde{\nabla}^{ij} f(W)$ is the Riemannian partial gradient of f with respect to the columns i and j of W.

Algorithm Riemannian Coordinate Descent (RCD) [MA22]

- 1: **Input:** Sequence of step sizes $\{\lambda^k\}$.
- 2: Initialize: Set k = 0. Set variable $X^0 \in \mathbb{R}^{m \times n}$ and $W^0 \in \mathcal{O}_d$.
- 3: while not converged do
- 4: Update unconstrained variable $X^{k+1} \leftarrow X^k \lambda^k \nabla_{X^k} f$.
- 5: Select a coordinate $(i, j) \in \mathcal{I}$ of the tangent space $\mathcal{T}_{W^k} \mathcal{O}_d$.
- 6: Update constrained variable $W^{k+1} = \operatorname{Retr}_{W^k}^{\mathsf{Expm}}(-\lambda^k \widetilde{\nabla}_{W^k}^{ij} f).$

7:
$$k \leftarrow k+1$$

8: end while

Issue: Commonly used machine learning libraries (e.g., PyTorch) can only compute **full** gradient, but only a tiny fraction of the full gradient is used in each iteration!

Consider a partition \mathfrak{C} of the index set [d] into l blocks C_1, C_2, \ldots, C_l . Each index represents a column in W. Randomly pick a pair of indices $(i, j) \in \binom{l}{2}$. Riemannian partial gradient:

$$\widetilde{\nabla}^{ij} f(W) = W_{ij} \operatorname{skew}(W_{ij}^{\top} \nabla^{C_{ij}} f(W)) - (I - WW^{\top}) \nabla^{C_{ij}} f(W).$$
(10)

Here, $C_{ij} = C_i \cup C_j$, $\nabla^{C_{ij}} f(W)$, $\widetilde{\nabla}^{ij} f(W)$ are the (Riemannian) partial gradient of f with respect to the block C_{ij} , and W_{ij} is the submatrix of W with columns indexed by C_{ij} .

Algorithm Riemannian Submanifold Gradient Method (RSGM-1) [CWYS24]

- 1: Input: Sequence of step sizes $\{\lambda^k\}$; a partition $\mathfrak{C} := \{C_1, \ldots, C_l\}$ of [d] with $l \ge 2$.
- 2: Initialize: Set k = 0. Set variable $X^0 \in \mathbb{R}^{m \times n}$ and $W^0 \in \mathcal{O}_d$.
- 3: while not converged do
- 4: Uniformly sample $\{i, j\} \sim {\binom{[l]}{2}}$.
- 5: Update unconstrained variable $X^{k+1} \leftarrow X^k \lambda^k \nabla_{X^k} f$.
- 6: Update constrained variable $W_{ij}^{k+1} = \operatorname{Retr}_{W^k}^{\operatorname{Polar}}(-\lambda^k \widetilde{\nabla}_{W^k}^{ij}f), W_{-ij}^{k+1} = W_{-ij}^k$.
- 7: $k \leftarrow k+1$
- 8: end while

Issue: The same as RCD.

torch.Tensor.requires_grad

Tensor.requires_grad

Is True if gradients need to be computed for this Tensor, False otherwise.

Figure: PyTorch only allows gradient freezing at the layer level, without finer-grained control.

Scalability

• Partial Gradient Availability & Backpropagation

Scalability

• Partial Gradient Availability & Backpropagation

Figure: Runtime comparison for different algorithms that utilize full gradient information.

• Scalability

• Partial Gradient Availability & Backpropagation

Method	Utilize Full Gradient?	Coordinate Method?	Source of Overhead	Overhead Complexity
SVB [LJW ⁺ 21]	1	×	SVD	$O(dp^2)$
RGD-Expm [Bon13]	1	×	Matrix exponential	$O(p^3)$
RGD-Polar [CWYS24]	1	×	Eigendecomposition	$O(p^3)$
RCD [MA22]	×	1	Givens rotation	O(d)
RSGM-l [CWYS24]	×	1	Eigendecomposition	$O(p^3/l^3)$
Proposed- l	1	1	Eigendecomposition	$O(p^3/l^2)$

Table: Comparison of different algorithms.

26 / 33

Part 5. Proposed Method

Algorithm Proposed Algorithm (Proposed-1)

- 1: Input: Sequence of step sizes $\{\lambda^k\}$; a partition $\mathfrak{C} := \{C_1, \ldots, C_l\}$ of [d] with $l \ge 2$.
- 2: Initialize: Set k = 0. Set variable $X^0 \in \mathbb{R}^{m \times n}$ and $W^0 \in \mathcal{O}_d$.
- 3: while not converged do
- 4: Update the unconstrained variable $X^{k+1} \leftarrow X^k \lambda^k \nabla_{X^k} f$.

5:
$$\mathcal{I} \leftarrow [l]$$

- 6: while $\mathcal{I} \neq \emptyset$ do
- 7: Uniformly sample two indices $i, j \sim \mathcal{I}$ without replacement; then, $\mathcal{I} \leftarrow \mathcal{I} \setminus \{i, j\}$.
- 8: Update the constrained variable $W_{ij}^{k+1} = \operatorname{Retr}_{W^k}^{\mathsf{Polar}}(-\lambda^k \widetilde{\nabla}_{W^k}^{ij} f).$
- 9: end while
- 10: $k \leftarrow k+1$
- $11: \ \text{end} \ \text{while}$

Key difference with RSGM: Here, we freeze the full gradient computation and iteratively update all columns of W, instead of updating only a portion of the columns.

Part 6. Experiments

Memory Copying Task

Figure: Convergence result of copying task. The best-known learning rate is used.

Fong (CSE, CUHK)

December 5, 2024

Sequential CIFAR-10 Classification Task

Figure: Convergence result of sequential CIFAR-10 task. The best-known learning rate is used.

Fong (CSE, CUHK)

- Analyze convergence properties and computational complexity
- Develop optimal learning rate selection scheme
- Extend other architectures such as LSTM, ConvNet and ResNet

- [Bon13] Silvère Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on Automatic Control, 58(9):2217–2229, 2013.
- [CWYS24] Andy Yat-Ming Cheung, Jinxin Wang, Man-Chung Yue, and Anthony Man-Cho So. Randomized submanifold subgradient method for optimization over stiefel manifolds, 2024.
- [LJW⁺21] S. Li, K. Jia, Y. Wen, T. Liu, and D. Tao. Orthogonal deep neural networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 43(04):1352–1368, apr 2021.
- [MA22] Estelle Massart and Vinayak Abrol. Coordinate descent on the orthogonal group for recurrent neural network training. Proceedings of the AAAI Conference on Artificial Intelligence, 36(7):7744–7751, Jun. 2022.