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Part 1. Elements of Riemannian Manifold
Optimization
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Riemannian Manifold

Definition (Manifold)
A manifold M of dimension d is a topological space that locally resembles
Euclidean space. Formally, for any W ∈M, there exists an open
neighbourhood UW ⊆M and a homeomorphism (topological
isomorphism) ϕ : UW → V where V is an open subset of Rd.

Definition (Riemannian Manifold)
A Riemannian manifold is a smooth manifold equipped with a smooth
inner product ⟨·, ·⟩W of tangent vectors at each point W .

Definition (Tangent Space)
The tangent space TWM for a manifold M at a point W ∈M is defined
by the collection of tangent vectors at W for all smooth curves
c : R→M passing through W .
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The Stiefel Manifold and the Orthogonal Group

Definition (Stiefel Manifold)
The Stiefel manifold is defined by

St(d, p) = {W ∈ Rd×p : W⊤W = Ip}.

The Orthogonal Group is a special case of Stiefel Manifold, which is
defined by

Od = St(d, d) = {W ∈ Rd×p : W⊤W = WW⊤ = Ip}.

Definition (Tangent Space of Stiefel Manifold)
Given a point W ∈ St(d, p), the tangent space at W is defined as

TW St(d, p) = {ξ ∈ Rd×p | ξ⊤W +W⊤ξ = 0}.
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Optimization on Stiefel Manifold

Consider the optimization problem:

min
W∈St(d,p)

f(W ), (1)

where f : Rd×p → R may be non-smooth non-convex.
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Example: Dimensionality Reduction (PCA)

Given a data matrix X ∈ RN×m consisting of m samples of N -dimensional
data, the goal is to find a linear map T : RN → Rn characterized by a
matrix U ∈ RN×n that maps the data into an n-dimensional subspace that
best preserves the reconstruction error of the data.
The optimization problem is then

min
U∈St(N,n)

||X − UU⊤X||2F . (2)
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Part 2. Generic Framework for First-Order
Riemannian Methods
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Riemannian Gradient
For a manifold M, given a point W and its corresponding tangent space
TWM, the Riemannian gradient is defined as

∇̃f(W ) = PTWM(∇f(W )), (3)

where ∇f(W ) is the Euclidean gradient of f at p, and
PS(ξ) := argminζ∈S ||ζ − ξ||2 is the projection operator onto the set S.

Figure: Illustration of Riemannian gradient on a simple manifold S1, which is a
circle embedded in ambient space R2.
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Riemannian Gradient for Stiefel Manifold

For the Stiefel manifold St(d, p), the Riemannian gradient is given by

∇̃f(W ) = W skew(W⊤∇f(W )), (4)

where skew(A) = 1
2(A−A⊤) is the skew-symmetric operator, and ∇f(W )

is the Euclidean gradient of f at W .
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Retraction Map
Each gradient descent step is then performed by iteratively updating the
point W as

W ← RetrW (−λ∇̃f(W )), (5)
where RetrW (·) is the retraction map at W onto the manifold M, and
λ ∈ R++ is the step size. This usually can be done by a two-step process:

1 Compute the Riemannian gradient update W ←W − λ∇̃f(W ).
2 Project the updated point onto the manifold by W ← PM(W ).

Figure: Illustration of Retraction map on manifold S1,

Fong (CSE, CUHK) RSSM December 5, 2024 11 / 33



Retraction Map for Stiefel Manifold

Polar-decomposition (Polar) based retraction:

RetrPolar
W (ξ) = (W + ξ)(I + ξ⊤ξ)−

1
2

Exponential map (Expm) retraction:

RetrExpm
W (ξ) = W Exp(W⊤ξ)

where Exp(·) is the matrix exponential function.
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Part 3. Problem Statement
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Orthogonal Recurrent Neural Networks

Given the input sequence x = {xt}Nt=1, where xt ∈ Rdin , the RNN aims to
predict the output sequence ŷ = {yt}Nt=1, where yt ∈ Rdout is close to some
ground truth y∗. The forward pass:

h0 = 0,

ht = ϕ(Winxt +Wht−1),

yt = Woutht + bout,

(6)

where ht ∈ Rd with hidden size d is the hidden state at time t,
Win ∈ Rd×din , W ∈ Od, Wout ∈ Rdout×d, ϕ is the nonlinearity function, and
bout ∈ Rdout is the bias term.
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Orthogonal Recurrent Neural Networks

We aim to train an RNN with the hidden weight matrix W lying on the
orthogonal group Od: The optimization problem is formulated as follows:

min
Θ

LΘ(ŷ, y∗) (7)

s.t. W ∈ Od, (8)

where Θ is the set of all trainable parameters, and LΘ is the loss function.
In this note, the loss function is assumed to be the cross-entropy loss.
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Contribution

In this project, we would like to propose a new Riemannian optimization
algorithm on Stiefel manifolds for training ODNNs that

is more scalable than the existing algorithms;
can make use of the full gradient information;
can be implemented in standard machine learning libraries;
can utilize a larger learning rate.
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Part 4. Existing Methods
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Singular Value Bounding

Algorithm Singular Value Bounding (SVB) [LJW+21]

1: Input: Sequence of step sizes {λk}; ϵ ∈ R+.
2: Initialize: Set k = 0. Set variable X0 ∈ Rm×n and W 0 ∈ Od.
3: while not converged do
4: Update the variables Xk+1 ← Xk − λk∇Xkf , Wk+1 ←Wk − λk∇Wkf .
5: [U,Σ, V ]← svd(Wk+1)

6: Clamp each diagonal term Σii into [1/(1 + ϵ), 1 + ϵ].
7: Wk+1 ← UΣV ⊤

8: k ← k + 1

9: end while

Issue: Singular value decomposition becomes computationally expensive
for large matrices.

Fong (CSE, CUHK) RSSM December 5, 2024 18 / 33



Gradient Descent Methods

Algorithm Riemannian Gradient Descent (RGD-Z) [Bon13, CWYS24]

1: Input: Sequence of step sizes {λk}.
2: Initialize: Set k = 0. Set variable X0 ∈ Rm×n and W 0 ∈ Od.
3: while not converged do
4: Update unconstrained variable Xk+1 ← Xk − λk∇Xkf .
5: Update constrained variable W k+1 ← RetrZ

Wk(−λk∇̃Wkf).
6: k ← k + 1

7: end while

Here, Z ∈ {Polar,Expm} determines the retraction map used in the
algorithm. Issue: No matter which retraction map is used, the algorithm
is still inefficient.

Polar: eigendecomposition is computationally expensive
Expm: matrix exponential is computationally expensive
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Coordinate Descent Method: Expm

Randomly pick a pair of indices (i, j) ∈ I := {(i, j) : 1 ≤ i < j ≤ d}
representing the entry in upper triangular part of W . Riemannian partial
gradient:

∇̃ijf(W ) = tr(H⊤i,jW
⊤∇f(W ))W skew(eie

⊤
j ), (9)

Given the Euclidean gradient ∇f(W ), the partial gradient ∇̃ijf(W ) can
be efficiently computed by the Givens matrix method in O(d) time.
∇̃ijf(W ) is the Riemannian partial gradient of f with respect to the
columns i and j of W .
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Coordinate Descent Method: Expm

Algorithm Riemannian Coordinate Descent (RCD) [MA22]

1: Input: Sequence of step sizes {λk}.
2: Initialize: Set k = 0. Set variable X0 ∈ Rm×n and W 0 ∈ Od.
3: while not converged do
4: Update unconstrained variable Xk+1 ← Xk − λk∇Xkf .
5: Select a coordinate (i, j) ∈ I of the tangent space TWkOd.
6: Update constrained variable W k+1 = RetrExpm

Wk (−λk∇̃ij
Wkf).

7: k ← k + 1

8: end while

Issue: Commonly used machine learning libraries (e.g., PyTorch) can only
compute full gradient, but only a tiny fraction of the full gradient is used
in each iteration!
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Block Coordinate Descent Method: Polar

Consider a partition C of the index set [d] into l blocks C1, C2, . . . , Cl.
Each index represents a column in W . Randomly pick a pair of indices
(i, j) ∈

(
l
2

)
. Riemannian partial gradient:

∇̃ijf(W ) = Wij skew(W
⊤
ij∇Cijf(W ))− (I −WW⊤)∇Cijf(W ). (10)

Here, Cij = Ci ∪ Cj , ∇Cijf(W ), ∇̃ijf(W ) are the (Riemannian) partial
gradient of f with respect to the block Cij , and Wij is the submatrix of
W with columns indexed by Cij .
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Block Coordinate Descent Method: Polar

Algorithm Riemannian Submanifold Gradient Method (RSGM-l) [CWYS24]

1: Input: Sequence of step sizes {λk}; a partition C := {C1, . . . , Cl} of [d] with l ≥ 2.
2: Initialize: Set k = 0. Set variable X0 ∈ Rm×n and W 0 ∈ Od.
3: while not converged do
4: Uniformly sample {i, j} ∼

([l]
2

)
.

5: Update unconstrained variable Xk+1 ← Xk − λk∇Xkf .
6: Update constrained variable Wk+1

ij = RetrPolar
Wk (−λk∇̃ij

Wkf),W
k+1
−ij = Wk

−ij .
7: k ← k + 1

8: end while

Issue: The same as RCD.

Figure: PyTorch only allows gradient freezing at the layer level, without finer-grained control.
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Main Issues of Existing Methods

Scalability
Partial Gradient Availability & Backpropagation
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Main Issues of Existing Methods
Scalability
Partial Gradient Availability & Backpropagation

Figure: Runtime comparison for different algorithms that utilize full gradient
information.
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Main Issues of Existing Methods

Scalability
Partial Gradient Availability & Backpropagation

Method Utilize Coordinate Source of Overhead Overhead
Full Gradient? Method? Complexity

SVB [LJW+21] 3 7 SVD O(dp2)
RGD-Expm [Bon13] 3 7 Matrix exponential O(p3)

RGD-Polar [CWYS24] 3 7 Eigendecomposition O(p3)
RCD [MA22] 7 3 Givens rotation O(d)

RSGM-l [CWYS24] 7 3 Eigendecomposition O(p3/l3)
Proposed-l 3 3 Eigendecomposition O(p3/l2)

Table: Comparison of different algorithms.
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Part 5. Proposed Method
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Proposed Method: Iterative Block Coordinate Descent

Algorithm Proposed Algorithm (Proposed-l)

1: Input: Sequence of step sizes {λk}; a partition C := {C1, . . . , Cl} of [d] with l ≥ 2.
2: Initialize: Set k = 0. Set variable X0 ∈ Rm×n and W 0 ∈ Od.
3: while not converged do
4: Update the unconstrained variable Xk+1 ← Xk − λk∇Xkf .
5: I ← [l]

6: while I ̸= ∅ do
7: Uniformly sample two indices i, j ∼ I without replacement; then, I ← I \ {i, j}.
8: Update the constrained variable Wk+1

ij = RetrPolar
Wk (−λk∇̃ij

Wkf).
9: end while
10: k ← k + 1

11: end while

Key difference with RSGM: Here, we freeze the full gradient
computation and iteratively update all columns of W , instead of updating
only a portion of the columns.
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Part 6. Experiments
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Memory Copying Task

Figure: Convergence result of copying task. The best-known learning rate is used.

Fong (CSE, CUHK) RSSM December 5, 2024 30 / 33



Sequential CIFAR-10 Classification Task

Figure: Convergence result of sequential CIFAR-10 task. The best-known learning rate is used.
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Future Work

Analyze convergence properties and computational complexity
Develop optimal learning rate selection scheme
Extend other architectures such as LSTM, ConvNet and ResNet
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